

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

A Laser Raman Study of Multiphase Co-Bi-Mo Oxide Catalysts

S. R. G. Carrazán^a; C. Martín^a; J. V. García-Ramos^b; V. Rives^a

^a Departamento de Química Inorgánica, Universidad de Salamanca, Salamanca, Spain ^b Instituto de Óptica "Daza de Valdés", Madrid, Spain

To cite this Article Carrazán, S. R. G. , Martín, C. , García-Ramos, J. V. and Rives, V.(1998) 'A Laser Raman Study of Multiphase Co-Bi-Mo Oxide Catalysts', *Spectroscopy Letters*, 31: 6, 1299 — 1311

To link to this Article: DOI: 10.1080/00387019808003304

URL: <http://dx.doi.org/10.1080/00387019808003304>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

A LASER RAMAN STUDY OF MULTIPHASE Co-Bi-Mo OXIDE CATALYSTS

Keywords: Laser Raman spectroscopy, multiphase catalysts, Co-Bi-Mo oxides.

S. R. G. Carrazán¹, C. Martín¹, J. V. García-Ramos² and V. Rives^{1*}

¹Departamento de Química Inorgánica, Universidad de Salamanca,
Salamanca, Spain

²Instituto de Óptica "Daza de Valdés", C. S. I. C., Serrano 117, 28026-
Madrid, Spain

ABSTRACT

Cobalt and bismuth molybdates catalysts prepared by three different methods (coprecipitation, mechanical mixing and dispersion in n-pentane), have been studied by Laser Raman spectroscopy before and after testing the catalysts in the selective oxidation of isobutene to methacrolein. Raman bands ascribed to the component phases are observed in the spectra before test, while a phase transformation is detected after test.

INTRODUCTION

Bismuth-molybdates are industrially important catalysts in reactions such as selective oxidation (i.e., propylene to acrolein) or ammonoxidation (i.e., propylene to acrylonitrile).¹⁻³ Usually, these catalysts improve their catalytic performances upon addition of other elements, such as Co, Ni, etc., giving rise to multiphase catalysts.

The activity and selectivity of these catalysts in the reactions mentioned above have been related to cooperation effects (synergetic effects) between the phases existing in the catalysts. The origin of these effects has been attributed to different causes, such as surface monolayer formation, surface contamination by elements of one phase on the surface of the other phase, a remote control mechanism, formation of new phases by solid state reaction, etc.

Thus, in order to elucidate the nature of these synergetic effects, a detailed characterization of the catalysts before and after test should be performed, to ascertain the nature of the phases formed along the reaction. It has been demonstrated that, in many cases, the catalytic results can be explained by one of those processes,^{3,4} but, in other cases, at least two processes are simultaneously involved.⁵ In this way, Raman spectroscopy has proven to be a very effective tool in detecting the phases existing at different Bi-Mo compositions.⁶

Multiphase catalysts with different molar fractions of the component phases have been prepared following different methods. Pure cobalt molybdate and bismuth molybdates with Bi/Mo ratios of 2/1, 2/2, and 2/3 were prepared separately, while multiphase catalysts consisting of three molybdates were prepared either by coprecipitation of cobalt and bismuth salts, or mechanically mixing the single molybdate phases, or by dispersing them in n-pentane. Calcination of the catalysts was then performed in order to facilitate solid state reactions. In particular, some catalysts were not calcined in order to compare their catalytic activities with those calcined before the catalytic test. All catalysts were calcined at 723 K during the test in the selective

oxidation of isobutene to methacrolein.⁵ Previous studies by X-ray diffraction^{5,7} allowed us to ascertain the crystallographic phases existing in the catalysts prepared, and after the test; however, the technique is strongly dependent on the size of the crystallites, and so a spectroscopic study by Laser Raman technique is here provided, from the advantage of the high Raman scattering ability of these materials.

EXPERIMENTAL

The starting materials were $\text{Co}(\text{NO}_3)_2 \cdot 6\text{H}_2\text{O}$, $\text{Bi}(\text{NO}_3)_3 \cdot 5\text{H}_2\text{O}$, and $(\text{NH}_4)_6\text{Mo}_7\text{O}_{24} \cdot 4\text{H}_2\text{O}$, all from Fluka (p.a.). Details of samples preparation are summarized in Table 1.

Cobalt and bismuth molybdates (samples A, B, C, and D)

Cobalt molybdate (sample A) was prepared by co-precipitation⁵ from 0.1 mol $\text{Co}(\text{NO}_3)_2 \cdot 6\text{H}_2\text{O}$ and 0.1/7 mol ammonium heptamolybdate (hereafter AHM). After precipitation, the solid was filtered and calcined in air at 773 K for 2 h.

Bismuth molybdates (samples B, C, and D) with Bi/Mo atomic ratios of 2/1, 2/2, and 2/3 were prepared by co-precipitation⁸ from $\text{Bi}(\text{NO}_3)_3 \cdot 5\text{H}_2\text{O}$ and AHM at pH 7, adjusted with aqueous ammonia. Samples were calcined in a quartz reactor under static air atmosphere at 753 K for 6 h; a slow heating rate (1 K/min) from 298 to 753 K was used in order to ensure the complete decomposition of ammonium nitrate.

Multiphase molybdates (samples E - L)

These samples were prepared from cobalt and bismuth nitrates, or from single molybdates A, C and D, following three different methods: co-precipitation (samples E and I), mechanical mixtures (samples F and J) and dispersion in n-pentane (samples G, H, K and L). The first method consisted of mixing aqueous solutions of $\text{Co}(\text{NO}_3)_2 \cdot 6\text{H}_2\text{O}$ and $\text{Bi}(\text{NO}_3)_3 \cdot 5\text{H}_2\text{O}$ ⁸ in the desired stoichiometric amounts (see Table 1), evaporation of water, drying and calcination of the solid. In the second method,⁵ the mixtures were obtained by hand grinding the cobalt and bismuth molybdates in an agate mortar for 20 min, the solids being

Table 1. Preparation conditions of the samples studied

Sample	Atomic ratio	Precursors ^a	Preparation ^b	Treatment ^c
Co:Mo Bi:Co Co:Bi:Mo				
A	1:1	CoN+AHM	CP	773/2
B	2:1	BiN+AHM	CP	753/6
C	2:2	BiN+AHM	CP	753/6 ^d
D	2:3	BiN+AHM	CP	753/6 ^d
E	9:1:10.5	CoN+BiN+AHM	CP	753/6 ^d
F	9:1:10.5	9A+0.5C	MM	753/6 ^d
G	1:2:4	1A+1C	n-pentane	un-calcined
H	1:2:4	1A+1C	n-pentane	773/144
I	9:1:10	9A+0.5B	CP	753/6 ^d
J	9:1:10	9A+0.5B	MM	753/6 ^d
K	1:2:3	1A+1B	n-pentane	un-calcined
L	1:2:3	1A+1B	n-pentane	773/144

^aCoN = cobalt nitrate; BiN = bismuth nitrate; AHM = ammonium heptamolybdate

^bCP = co-precipitation; MM= mechanical mixture; n-pentane= dispersion in n-pentane.

^cCalcination temperature (K)/time (h)

^dheating rate = 1K/min

finally calcined at 753 K for 6 h. Dispersed mechanical mixtures were prepared by dispersing in n-pentane equal amounts of bismuth molybdates (2/2 or 2/3) and cobalt molybdate.⁴ The solvent was evaporated and the solid dried at 353 K for 15 h. Two samples of these powder mixtures were not calcined, whereas other were calcined at 773 K for 6 days.

The multiphase catalysts were calcined at 753 and 773 K during 6 and 144 h; some catalysts were not calcined, in order to compare the effect of calcination on the catalytic activity.

The Raman spectra were collected on a computer-controlled Jobin Yvon spectrometer (model U1000). The 514.5 nm line from a Spectra Physics model argon-ion laser was used as the exciting source. The spectral shift-width was typically of 4 cm^{-1} and laser source powers of approximately 20 mW, measured at the sample, were used.

RESULTS

With regards to XRD monitoring of the crystallographic phases existing in the catalysts, the samples (calcined or uncalcined) show the diffraction maxima due to the phases depicted below, before the catalysis runs; Phases changes are observed only after the catalytic studies; i.e., no effect of calcination is observed on the phases existing in the catalysts.

The Raman spectra of bismuth molybdates (samples B, C, and D) before and after test are presented in Figure 1.

X-ray diffraction data for catalysts B, C, and D, prior to the catalytic test, have evidenced the crystallographic phases $\gamma\text{-Bi}_2\text{MoO}_6$, ($\alpha+\gamma$)- $\text{Bi}_2\text{Mo}_2\text{O}_9$, and $\alpha\text{-Bi}_2\text{Mo}_3\text{O}_{12}$.⁵⁻⁸ Figure 1.a shows the Raman spectrum for sample D, with bands at 955, 925, 900, 858, 840, 815, 650 cm^{-1} due exclusively to internal modes for Mo-O stretchings of the three crystallographically distinct MoO_5 units of the $\alpha\text{-Bi}_2\text{Mo}_3\text{O}_{12}$ phase⁹ as it is assigned by Hardcastle et al.^{10,11} by directly correlating the experimental wavenumbers with crystallographically determined Mo-O bond lengths. No band due to Bi-O stretchings in the 600-400 cm^{-1} region is observed in the spectrum and bands below 400 cm^{-1} must be assigned collectively as bending/wagging and external modes.

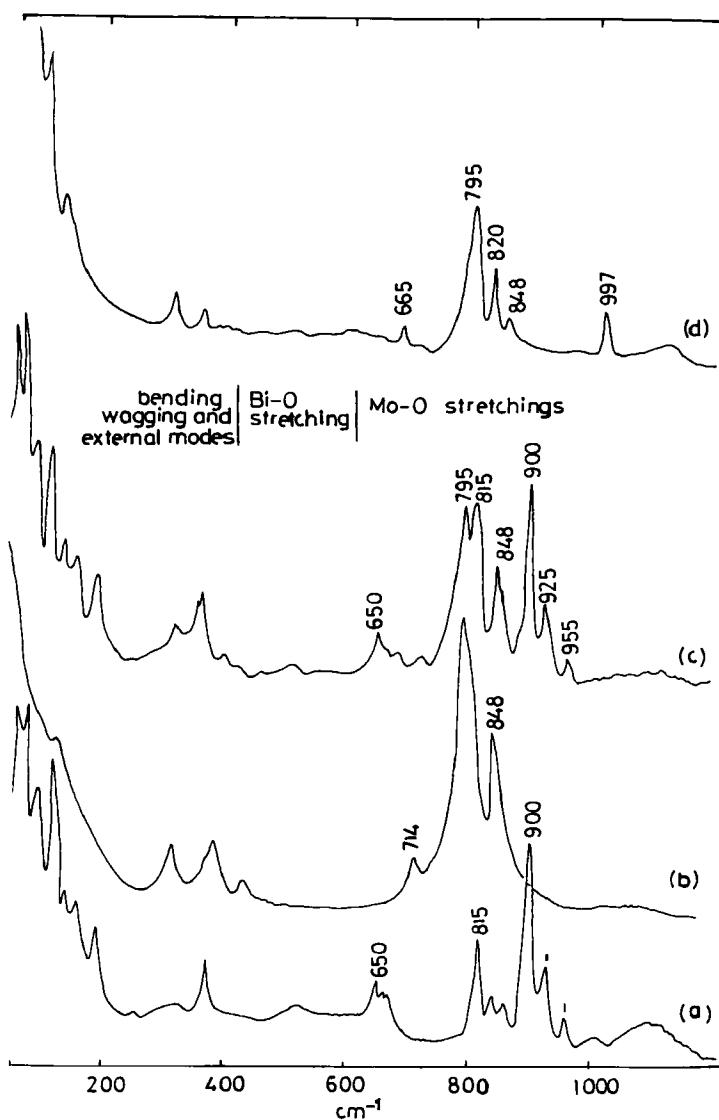


FIG. 1.-Laser Raman spectra of catalysts: (a) D before test; (b) C before test; (c) C before test; and (d) C after test.

The Raman spectrum of sample B, crystallographically identified as the γ - Bi_2MoO_6 phase, is shown in Figure 1.b. The structure of this phase has been studied by X-ray diffraction¹² and consists of alternating layers of BiO_2^{2+} and corner sharing, distorted $[\text{MoO}_6]$ octahedra. Only one type of $[\text{MoO}_6]$ octahedron is present in this structure, and the bands at 848, 795 and 714 cm^{-1} have been assigned to Mo-O stretchings of the $[\text{MoO}_6]$ octahedron.¹¹

The spectrum of sample C is shown in Figure 1.c; bands assigned to both, α - $\text{Bi}_2\text{Mo}_3\text{O}_{12}$ and γ - Bi_2MoO_6 phases are observed, indicating that the composition of this 2:2 sample is biphasic (($\alpha+\gamma$)- $\text{Bi}_2\text{Mo}_2\text{O}_9$), as it has been also demonstrated by X-ray diffraction measurements.⁵

After the test, however, the XRD results for samples C and D evidenced the presence of γ - Bi_2MoO_6 (koechlinite) and MoO_2 (tungarinovite), the diffraction peaks due to α - $\text{Bi}_2\text{Mo}_3\text{O}_{12}$ being absent in the diagram recorded after the test. In addition, traces of MoO_3 and $\text{Bi}_{2x}\text{Mo}_{1-x}\text{O}_3$ -type phase were also detected. Correspondingly, the Raman spectra recorded for samples C and D after the test are also different to those for the untested samples, Fig. 1.d. Bands corresponding to γ - Bi_2MoO_6 (848, 795 cm^{-1}) and MoO_3 (997, 820 and 665 cm^{-1} due to terminal Mo-O bond, Mo-O-Mo and Mo_3O stretchings, respectively¹³) are, however recorded, being α - $\text{Bi}_2\text{Mo}_3\text{O}_{12}$ bands absent after test.

Figure 2 shows the spectrum of sample A before test, identified as β - CoMoO_4 by XRD, with bands at 852, 777, and 344 and 309 cm^{-1} which can be ascribed to the stretching and bending modes of MoO_4^{2-} species. No change was observed in the spectrum after the test.

The Raman spectra of multiphase catalysts before test (α - $\text{Bi}_2\text{Mo}_3\text{O}_{12}$ + β - CoMoO_4 and ($\alpha+\gamma$)- $\text{Bi}_2\text{Mo}_2\text{O}_9$ + β - CoMoO_4), are presented in Figure 3.

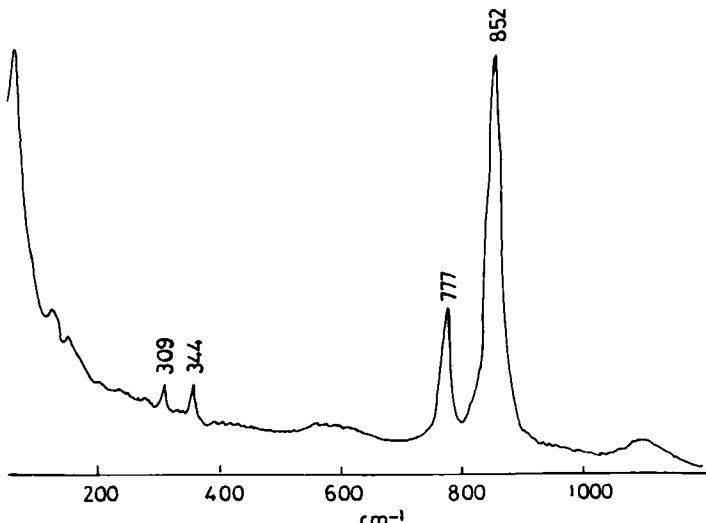


FIG. 2.-Laser Raman spectrum of catalyst A before and after the test (no change was observed).

Samples E-H show similar spectra (Fig 3.a) with bands at 955, 925, 900, 815, 650 and 851 and 777 cm⁻¹ that are ascribed to Mo-O stretchings in α -Bi₂Mo₃O₁₂ and β -CoMoO₄, respectively. In a similar way, the Raman spectra of samples I -L (Fig. 3.b) present bands at 955, 925, 900, 815, 650 and 795 cm⁻¹, assigned to α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆, respectively, and two bands at 851 and 777 cm⁻¹ ascribed to β -CoMoO₄.

Different spectra for both series of samples E-H and I-L are observed after test (see Figure 4.a and b, respectively). Only bands due to MoO₃ and β -CoMoO₄ are observed in the spectra of E-H samples, while bands due to γ -Bi₂MoO₆ are depicted, in addition to MoO₃ and β -CoMoO₄, in the spectra of I-L samples.

DISCUSSION

Before test, the Raman spectra of samples C and D showed bands due to α -Bi₂Mo₃O₁₂, γ -Bi₂MoO₆ and α -Bi₂Mo₃O₁₂, respectively. After

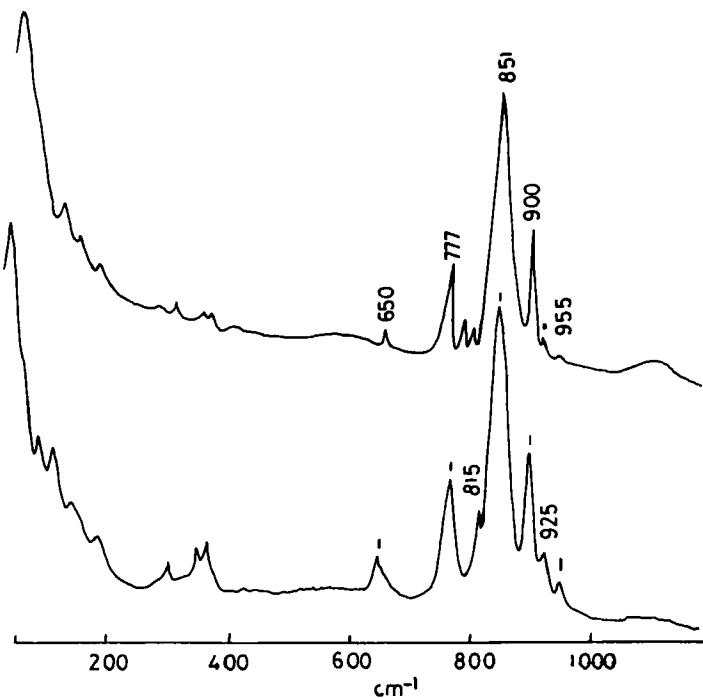


FIG. 3.-Laser Raman spectra of multiphase catalysts before test: (a) catalysts E-H; (b) catalysts I-L.

test the formation of new phases, γ - Bi_2MoO_6 and MoO_3 is detected in both catalysts. If the spectrum of β - CoMoO_4 , is compared to those of bismuth molybdates (in the same region), it is rather simple, indicating a higher symmetry around the Mo site.

The Raman spectra of the multiphasic catalysts, prepared by coprecipitation, mechanical mixing or dispersion in n-pentane did not indicate the formation of a new phase after calcination. The Raman spectra corresponded to those cobalt and bismuth molybdates and they were identical to those observed for the non-calcined catalysts. After test, the Raman spectra indicated a transformation of α - $\text{Bi}_2\text{Mo}_3\text{O}_{12}$

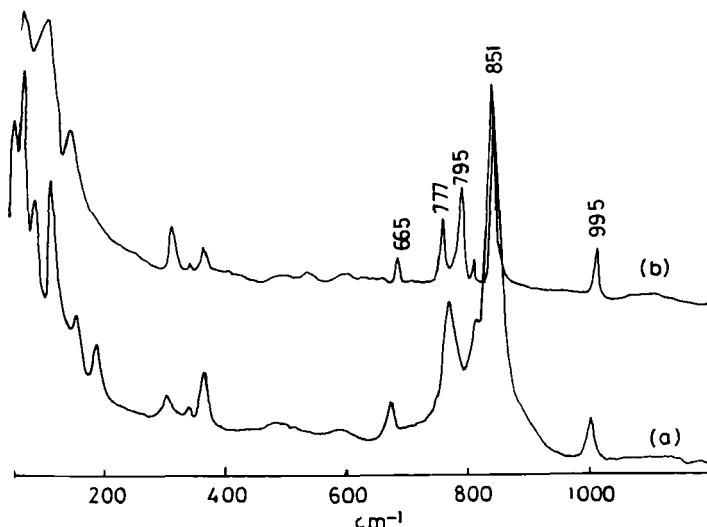


FIG. 4.-Laser Raman spectra of multiphase catalysts after the test: (a) catalysts E-H; (b) catalysts I-L.

into γ - Bi_2MoO_6 and MoO_3 . The absence of bands due to γ - Bi_2MoO_6 in catalysts E-H after test, must be due to the fact that the bands ascribed to MoO_3 and β - CoMoO_4 mask those of γ - Bi_2MoO_6 .

The observation of bulk MoO_3 in the Raman spectra of catalysts after test, confirms our previous results⁵ obtained by X-ray measurements which indicated a transformation of α - $\text{Bi}_2\text{Mo}_3\text{O}_{12}$ into γ - Bi_2MoO_6 and MoO_2 , being MoO_3 detected as traces. Thus, the transformation occurring during the test could be expressed as α - $\text{Bi}_2\text{Mo}_3\text{O}_{12} \rightarrow \gamma\text{-Bi}_2\text{MoO}_6 + 2\text{MoO}_3$, with a subsequent reduction of MoO_3 to MoO_2 .

The detection of bulk MoO_3 by Raman measurements is due to the strong Raman scattering power of this transition metal oxide.

CONCLUSIONS

The Raman spectra of multiphase catalysts, prepared either by coprecipitation, mechanical mixing or dispersion in n-pentane, show bands ascribed to the internal and external modes of the molybdates phases existing in these catalysts before test (β -CoMoO₄, α -Bi₂Mo₃O₁₂ and ($\alpha+\gamma$)-Bi₂Mo₂O₉). No effect of calcination is observed on these phases.

Phase changes are observed in the Raman spectra, only after the catalytic studies, α -Bi₂Mo₃O₁₂ being transformed into γ -Bi₂MoO₆ and MoO₃.

Raman spectroscopy can detect the phases formed after test more precisely than X-ray diffraction measurements, probably due to the strong scattering power of the species present in the catalysts after catalytic reaction.

ACKNOWLEDGEMENTS

The authors acknowledge financial support from DGICYT (project PB93-0633).

REFERENCES

1. Moro-Oka Y., Ueda W. Selective Oxidation and Ammonoxidation of propane to form acrolein and acrylonitrile. *Stud. Surf. Sci.* 1993; 75: 1983-1986.
2. Ponceblanc H., Millet J. M. M., Coudurier G., Herrmann J. M., Vedrine J. C. Study of Multiphasic Molybdate-Based Catalysts. *J. Catal.* 1993; 142: 373-380.
3. Moro-Oka Y., Ueda W., He D. H. Surface Reactions Controlled by Bulk Migration of Oxide Ions. Working Mechanism of

Multicomponent Bismuth Molybdate and Sheelite-type Oxide Catalysts. *Dyn. Proc. Solid Surface.* 1993; 283-305.

4. Carrazán S. R. G., Peres C., Bernard J. P., Ruwet M., Ruiz P., Delmon B. Catalytic Synergy in the Oxidative Dehydrogenation of Propane over MgVO catalysts. *J. Catal.* 1996; 158: 452-476.
5. Carrazán S. R. G., Martín C., Rives V., Vidal R. Selective Oxidation of Isobutene to Methacrolein on Multiphasic Molybdate-Based Catalysts. *Appl., Catal.* 1996; 135: 95-123.
6. Dixit L., Gerrard D. L., Bowley H. J. Laser Raman Spectra of Transition Metal Oxides and Catalysts. *Appl. Spectrosc. Rev.* 1986; 22: 189-249.
7. Carrazán S. R. G., Martín C., Rives V., Vidal R. An FTIR Spectroscopy Study of the Adsorption and Oxidation of Propene on Multiphase Bi, Mo and Co Catalysts. *Spectrochimica Acta.* 1996; A52: 1107-1118.
8. Theobald F., Laarif A., Tachez M. Bismuth Molybdate: the γ - $\text{Bi}_2\text{O}_3\text{-MoO}_3$ Polymorph. *J. Catal.* 1982; 73: 357-360.
9. Van den Elzen A. F., Rieck G. D. The Crystal Structure of $\text{Bi}_2\text{Mo}_3\text{O}_{12}$. *Acta Crystallogr.* 1973; 29B: 2433-2436.
10. Hardcastle F. D., Wachs I. E. Determination of Molybdenum Oxygen Bond Distances and Bond Orders by Raman Spectroscopy. *J. Raman Spectrosc.* 1990; 21: 683-691.
11. Hardcastle F. D., Wachs I. E. Molecular Structure of Molybdenum Oxide in Bismuth Molybdates by Raman Spectroscopy. *J. Phys. Chem.* 1991; 95: 10763-10772.

12. Van den Elzen A. F., Rieck G. D. The Structure of Bi₂MoO₆ Koechlinite. *Acta Crystallogr.* 1973; 29B: 2436-2438.
13. Beattie I. R., Gilson T. R. Oxide Phonon Spectra. *J. Chem. Soc.* 1969; (A): 2322-2327.

Date Received: April 6, 1998

Date Accepted: May 15, 1998